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ABSTRACT 

We provide new polyhedra without diagonals, and we discuss their embed- 

dings in euclidean 3-space with maximal symmetries starting with a com- 

plete classification of their combinatorial properties : orientable neighborly 

2-pseudomanifolds with 9 vertices or Mendelsohn triple systems $2(2,3, 9). 

This article was motivated by the longstanding and still open question: find 

a triangulated 2-manifold which can not be embedded in 3-space. Further- 

more, we applied tested and improved algorithms for realizing oriented 

matroids or finding final polynomials. 
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1. I n t r o d u c t i o n  

By a p o l y h e d r o n  w i t h o u t  d iagonals  or also n e i g h b o r l y  p o l y h e d r o n  we 

mean a polyhedron P in euclidean 3-space R 3, in which for every two vertices 

x, y of P,  the line-segment Ix, y] joining x and y is an edge of P. In particular it 

follows that bdP,  the boundary complex of P,  is a simplicial 2-complex and that 

the graph of P (whose vertices and edges are the vertices and edges of P,  resp.) 

is a complete graph. 

As far as we know, the only known neighborly polyhedra in _R 3 are the tetra- 

hedron (the only convex one) and Cs£sz~r's torus with 7 vertices ([12], see also 

[16], [1], [9]). In this article we present several new neighborly polyhedra, each 

of them with 9 vertices. The boundaries of these polyhedra, however, are not 

2-manifolds but rather pseudomanifolds or pinched manifolds. The requirement 

is that each edge occurs in exactly two triangles. 

From the combinatorial point of view, the boundary structures of our polyhedra 

are simple block designs $2(2,3,9) which have been classified in the literature 

([19], [20], [17]). In Section 5 and 6, we give various polyhedral embeddings into 

R 3. Our investigation is based on a method using oriented matroids described in 

Section 3, and it requires extensive computer calculations. 

It is well known that the next case of a neighborly 2-manifold (after Cs~sz£r's 

torus) is the case of genus 6 with 12 vertices, see [1], [5], [21]. In a yet unpublished 

result, the first author has found 59 distinct orientable types. However, the 

embedding problem is open for quite a long time and we hope that this problem 

can be tackled by the methods of this article. 

1.1 PROBLEM: Does there exist a neighborly polyhedron with 12 vertices whose 

boundary is a 2-manifold ? 

2. Neighborly Pseudomanifolds and Block Designs 

A block design $2(2,3, n) is a collection of abstract triples (or blocks) of ele- 

ments 1, 2 , . . . ,  n s.t. every pair of elements is contained in exactly two triples. 

It is called a s imple  b lock  des ign  if each triple occurs at most once, i.e. if 

there are no repeated blocks. Interpreting the triples as triangles of a simplicial 

2-complex M with n vertices we have : 

1. any two vertices x, y C M are joined by an edge of M, 

2. every edge is contained in exactly two triangles. 
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This implies that the link of a vertex is a union of closed cycles. We call 

such a complex a ne ighbor ly  2 -pseudomani fo ld ,  briefly NPM. If the link of a 

vertex is one single cycle we call the vertex regular ,  otherwise s ingular .  If the 

cycles in the link of a singular vertex x are of lengths hi,  n2 , . . . ,  nt, x is s ingular  

of  t y p e  (nl, n2 , . . . ,  nt), and of mul t ip l i c i ty  t. (Clearly nl _> 3 for each i.) A 

2-pseudomanifold all of whose vertices are regular is called a 2-manifold .  

For a general block design S~(2, 3, n), every pair of elements is contained in 

exactly A triples. Especially, a block design $1(2,3, n) is called a S te ine r  t r ip le  

s y s t e m  (STS). An oriented simple $2(2,3, n) (the blocks are cyclic oriented 

triples and every oriented pair of elements is contained in a unique block) is 

also known as M e n d e l s o h n  t r ip le  sys tem.  Its topological counterpart is an 

orientable NPM. 

A cyclic block des ign  $2(2,3, n) is a design with pointset Zn (= additive 

group of integers modulo n) such that any block {al, a2, a3} implies {al + 1, a2 + 

1, a3 + 1} to be a block as well. A cycle class is a set of blocks {{al + i, a2 + 

i, a3 + i} I i • Zn}, where {al ,a2,  a3} is a block. With this definition we call 

$2(2,3,n) a 1 - ro ta t iona l  block des ign  if the pointset is Zn-1 U {co}, where 

co + 1 = co, see [18]. 

If a 2-complex M is a neighborly pseudomanifoid N P M  and x is a singular 

vertex of M of type (nl,  n 2 , . . . ,  nt), then sp l i t t ing  x is the operation of replac- 

ing x by t new vertices x l , x 2 , . . . , x t ,  joining each xi by edges to the proper 

ni vertices Yil, Y i2 , . . . ,  Yi.,, which form a cycle of length ni in link(x, M), and 

adding the triangles xiyilyi.~,,x~yi~yij+~ (1 < j < ni), thus yielding from M a 

2-pseudomanifold M ~, not neighborly any more, with t - 1 vertices more than M, 

such that  link(xi, M/) is a cycle of length ni. If we split several singular vertices 

of M, then the final result is independent of the order of the splitting. 

A neighborly pseudomanifold NPM M is s t rong ly  c o n n e c t e d  if for every two 

triangles A, A ~ in M, there is a sequence A = /k l , /k2 , . . . , /k t  -- /V of triangles 

in M such that for each 1 _< i < t, A~and A~+I share a common edge. 

An NPM M is not necessarily strongly connected. But if it were, then split- 

ting all its singular vertices yields a 2-manifold. If, however, M is not strongly 

connected but has, say, s components with respect to .strong connectivity, then 

splitting all the singular vertices of M yields s disjoint 2-manifolds. 

Since the boundary complex of every 3-polyhedron is orientable, we assume 

all the 2-manifolds and NPM's  in this article to be orientable. (Note that if a 
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pseudomanifold M1 is obtained from an NPM M2 by splitting a singular vertex, 

then M1 is orientable if and only if M2 is.) 

Let M be an NPM with n vertices, then it has n ( n -  1)/2 edges and n(n - 1)/3 

triangles. Hence n ~ 2 mod 3. The link of a regular vertex of M is a cycle of length 

n - 1 .  I fx  is a singular vertex of type (nl,  n 2 , . . . ,  nt), then n,÷n2+...-t-nt = n-1.  

Hence there is no NPM with singular vertex and n <_ 6. It is also easy to check 

that the only NPM with n = 7 vertices is the Mhbius torus, see [2]. Thus n = 9 

is the first interesting case. It is well known that the smallest n > 7 for which 

there exist neighborly 2-manifolds with n vertices is n = 12, see e.g. [1]. Thus 

the most we can expect for 7 < n < 12 is orientable NPM's with 9 and/or  10 

vertices having at least one singular vertex. From now on we concentrate on 

NPM's with 9 vertices. 

This implies: an NPM has 9 vertices, 36 edges, and 24 triangles. A singular 

vertex in an NPM M is necessarily of type (3, 5) or of type (4, 4). In any case its 

multiplicity is 2. Therefore if there are altogether p singular vertices in M, and 

M is strongly connected, then splitting all the singular vertices of M yields a 2- 

manifold M'  of genus % say, and Euler's equation reads 9 + p -  36 + 24 = 2 -  2% 

Hence p is odd, "y = 5 - p / 2  and, as I' -> 0, p <_ 5. M can be obtained from M'  

by pinching M' at certain p pairs of vertices. Thus we can say that  the NPM M 

is a p i n c h e d  2-mani fo ld  of genus 7, eg if p -- 3 then M is a pinched torus. 

In [20], [19], [17] we find lists of all $2(2,3,9) block designs. From those lists 

(and from our independent one as well) we get : 

2.1 THEOREM: There are altogether five orientable neighborly 2-pseudo- 

manifolds with 9 vertices. 

It is interesting to note that these five NPM's are distinguished already by the 

types of their singular vertices. If we denote by NPMij an NPM with i singular 

vertices of type (3, 5) and j singular vertices of type (4, 4), then the five NPM's 

are symbolized by NPM21, NPM03, NPM30, NPM01, and NPM45. The first 

three are pinched tori, the fourth is a pinched manifold of genus 2, and the last 

one is not a pinched manifold. Splitting all its 9 singular vertices yields three 

2-spheres. The detailed description of the five NPM's is in Section 4. In Section 

5 we will prove the main result of our article. 

2.2 THEOREM: Each of the five orientable neighborly 2-pseudomanifolds with 

nine vertices is geometrically embeddable in R 3. 
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Each such embedding yields a neighborly 3-polyhedron with 9 vertices. How- 

ever, two different geometrical embeddings of the same NPM may yield two 

polyhedra which differ essentially. In [9] all realizations of MSbius torus with 7 

vertices were found. We are not going to carry the present investigation that  far. 

Even the meaning of different types will be restricted here more than in [9]. 

Consider a triangulated torus T, and let x, y be two vertices in T far apart from 

each other. A pinched torus can be obtained from T by glueing (ie identifying) 

x and y either "inside" the torus (Figure la) or "outside" it (Figure lb). In the 

first case we say the identification of x, y (or the realization of the torus at the 

singular vertex x = y) is of type I (In), in the other case it is of type O (Out). If 

we consider the unfolded torus as a rectangle in the usual way, and we think of 

the rectangle as two-sided, where the side seen in front being the outside of the 

torus, then the type I identification can be thought of as the points x, y lying on 

the unseen side of the rectangle (Figure lc), while in the type O identification, 

they lie in front (Figure ld).  This notion can be generalized easily to pinched 

manifolds of higher genus. 

Two realizations of a strongly connected NPM M will be considered t y p e -  

d i f f e ren t  if M has a singular vertex which in one realization of M is of type 

a 

:'" "o d ~ • I 

Figure 1: Two types of identification of two vertices 
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I while in the other it is of type O. Thus a pinched manifold with 3 singular 

vertices may have up to 2 3 = 8 different topological realizations, yielding at most 

8 different neighborly polyhedra. 

The neighborly polyhedra in this article are looked for as follows. For a given 

NPM M, we pick a symmetry of M of the highest degree, such that M can be 

geometrically embedded in R 3 with this symmetry. Next we look for all type- 

different embeddings in R 3 having that symmetry. 

3. O r i e n t e d  M a t r o i d s  

This article deals with orientable neighborly pseudomanifolds and their realiza- 

tions in 3-dimensional euclidean space. As a necessary condition for a symmetric 

realization of a neighborly pseudomanifold in the 3-dimensional affine euclidean 

space, we require the existence of a symmetric n e i g h b o r l y  m a t r o i d  p seu d o -  

m a n i f o l d  defined as a pair of the NPM together with an admissible oriented 

matroid. We are going to define this in the following. 

Among the possible ways of defining an oriented matroid X, we use a definition 

involving hyperline sequences, see e.g. [8]. 

We write the finite set o fn  points as E = {1 , . . . ,  n}, and we use A(n, d) for the 

set of all tuples ,~ = (,kl, , k 2 , . . . ,  Ad) C E d , 1 < ,kl < .k2 < . . .  < ,kd < n.  To each 

o r i e n t e d  h y p e r l i n e  1 = ( l l , . . . ,  Id-2)  E A(n, d - 2), we assign a n o r m a l i z e d  

h y p e r l i n e  s e q u e n c e  

h t  ( l l ,  . - , l d - 2 [  I . . , s l n l n )  = . 8 d _ l l d - 1 ,  • 

t { - 1 , 1 } ,  d - 1  _< i < n, with {Ix , . . . , /n}  = E ,  Id-1 < I d , . . . , I n ,  and s i E 

(s~_ 1 = 1); and we assign corresponding b r acke t  signs (= signs of formal d x d- 

subdeterminants) 

sign[/1 . . . . .  l d - 2 , s } l j ,  s~lk] := 1 

for all j ,k :  d -  1 < j < k < n, such that for all bases  b = (b l , . . . ,bd)  e A(n,d) 

and for all permutations 7r: {1 , . . . ,  d} ~ {1 , . . . ,  d} 

sign[b1,.. . ,  bd] = sign(Tr)sign[b~o),..., b.(d)] ,  

-s ign[b1, . . . ,  bj,  . . . , bd] = sign[b1 . . . .  , - b j  . . . .  , bd]. 

The last conditions tell us that the (d) definitions of signs for a fixed bracket 

b = [bl,..  , bd] with ( b l , . . . , b d )  C A(n,d) have to be compatible. It is known 

that  the hyperline sequences are determined by the bracket signs and vice versa. 
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3.1 Definition: Oriented Matroid in Terms of Hyperline Sequences. The set E 

together with a set of hyperline sequences with compatible bracket signs is a 

u n i f o r m  o r i e n t e d  m a t r o i d  x(n, d) of  n p o i n t s  in r a n k  d. 

Since we deal with 3-dimensional polyhedra, the r a n k  d is 4, and we write 

X(n, 4) = x(n).  Given a group G of permutat ions on E~ we can have automor- 

phisms of NPM's  as well as automorphisms of oriented matroids defined in a 

straight-foreward way. 

3.2 Definition: Neighborly Matroid Pseudomanifold. A n e i g h b o r l y  m a t r o i d  

p s e u d o m a n i f o l d  w i t h  n p o i n t s  a n d  s y m m e t r y  g r o u p  G, is a pair (NPM, 

X) of a neighborly pseudomanifold NPM with symmetry  group G and a uniform 

oriented matroid X with the same set E of points and the same symmetry  group 

G, such that  X is c o m p a t i b l e  to the list of triangles of the neighborly pseudo- 

manifold NPM. Compatible here says that  the restriction of X to any set of 5 

points formed as the union of a triangle and an edge of the NPM can be realized 

as a 5 point set in R 3 such that  the realized edge does not intersect the realized 

triangle. 

The notion of a neighborly matroid pseudomanifold is similar to the notion 

of a matroid polytope, see [6]. It  is a combinatorial object midway between the 

abstract  (or topological) NPM and its final realization. 

We define a t e t r a h e d r a l  p a r t i t i o n  T P ( N P M ,  x) of a neighborly matroid 

pseudomanifold (NPM, X) to be a set of bases { t l , t 2 , . . . ,  tk}, of the oriented 

matroid X, with ti C A(n, 4), such that  each triangle formed by deleting one 

element in the set of points of any base occurs either precisely twice or once, and 

if it occurs once, then it is a triangle of NPM. Furthermore, each triangle of an 

NPM occurs once, and X is compatible, in the sense of Definition 3.2, to the list 

of all the above triangles. 

On the topological level, a tetrahedral  parti t ion of a 2-pseudomanifold M is a 

3-pseudomanifold with M as its boundary and with no interior vertices. 

4. C o m b i n a t o r i a l  D e s c r i p t i o n  of  t h e  F ive  N P M ' s  

In the sequel we describe the five NPM's,  see [20], [19], [17]. In each case we give 

the list of triangles in the NPM. Moreover, we describe the automorphism group 

G of the abstract  complex, and we provide neighborly matroid pseudomanifolds 

(NPM,  ~.) having a subgroup G ~ of G as large as possible. The notion t y p e -  

d i f f e ren t  carries over to the oriented matroid setting. For a neighborly matroid 
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pseudomanifold which has a tetrahedral partition, the topological type (= type 

I or O of the embedding) is easily determined from the partition. 

We looked for type-different neighborly matroid pseudomanifolds with the sym- 

metry group G' for all possible topological types of NPMs. 

For many but not all topological types of all NPM's for which there was a 

corresponding neighborly matroid pseudomanifold, there was also a correspond- 

ing tetrahedral partition. We describe these tetrahedral partitions in the sequel. 

Apart from their abstract relevance, they are of use in constructing and under- 

standing the neighborly polyhedra. 

4.1 NPM21: A PINCHED TORUS. 

The triangles of NPM21 are 

123 129 134 146 156 157 178 189 239 247 256 257 
248 268 347 358 359 367 368 458 459 469 679 789 

This orientable neighborly pseudomanifold is easily seen to be a pinched torus, 

singular at the vertices 2, 5 and 8. The vertices 2 and 8 are of type (3, 5), the 

vertex 5 is of type (4, 4), (Figure 2). This complex has the symmetry group of 

order 2 generated by ~ - (19)(28)(37)(46)(5). Since this symmetry interchanges 

the two singular vertices of type (3,5), we can expect at most 4 topological types 

of neighborly polyhedra. 

6 7 2 8 3 4 9 1 6 

Figure 2: NPM21, a pinched torus 

In looking at Figure 2, we see that  after splitting the singular vertices one can 

get the MSbius' torus with seven vertices by shrinking the proper edges. 

There are altogether 5 oriented matroids admissible to NPM21 with the sym- 

metry r .  For the method of finding them compare eg [11] or [7]. 

One oriented matroid is given implicitly by matrix No.1 in Section 6. The 

remaining four oriented matroids differ only by the sign of some brackets. The 
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first and the second oriented matroid differ by the sign of the brackets [1348] and 

[2679], the second and the third by [1346] and [4679], the third and the fourth by 

[1345] and [5679[, and the fourth and the last by [1347] and [3679], respectively. 

All these five neighborly matroid pseudomanifolds have the same tetrahedral 

partition, namely 

- 1789  -1679  +1567 - 3 5 6 7  +3568 -2568  
-1469  I 5 [ 

- 1239  - 1 3 4 9  +3459 -3457  +2457 -2458  

The signs of the tetrahedra (signs of bases of the oriented matroid) provide us 

with useful information. This implies that we can expect at most one realized 

topological type. 

4.2 NPM03:  A PINCHED TORUS. The triangles of NPM03 are 

124 135 168 179 236 259 278 347 389 458 469 567 
127 139 146 158 238 249 256 345 367 478 579 689 

It is easily seen to be a pinched torus with three singular vertices 4,5, and 6 each 

of type (4, 4). The automorphism group of this complex is the symmetric group 

5'3 of order 6 generated by a = (19)(28)(37)(46)(5) and 7r = (123)(465)(789). 

There are also interesting properties in the block designs terminology. The first 

row of the above triangles is a Steiner triple system S 1(2, 3, 9) described by the 
5 6 7 

following model of AG(2,3): 9 8 3, and the second row is the STS disjoint to 
2 1 4 

5 7 9 
the first: 8 3 2. In Figure 3 the disjoint STS are marked. In [14] is a list of 

1 6 4 
a maximal number of pairwise disjoint STS with 9 vertices and the second and 

sixth STS form together without permutations a block design $2(2,3,9).  NPM03 

is the only 9NPM which can be build by two disjoint STS. The image under a 

of the first STS is the second STS, and r is a symmetry to itself. In Figure 3, a 

is the reflection at the centre and ~r is a translation. 
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There is no oriented matroid with the full symmetry of order 6. 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  . t _  . . . . . . . . . . . . . . .  

8 7 9 
Figure 3: NPM03, a pinched torus 

There exist (up to symmetries) altogether 3 oriented matroids forming together 

with NPM03 a neighborly matroid pseudomanifolds with the symmetry of order 

3. We give the signs of all bases of the corresponding oriented matroid ordered 

canonically ([1234] = +, [1235] = + . . . . .  [1239] = +, [1245] = - ,  . . . .  [6789] = 
- - ) .  

÷ + ÷ 4 + +  . . . . .  + . . . . . . .  ÷ + - + + ÷ + ÷ ÷ + 4 + + ÷ - - +  . . . .  + + - ÷ - - + + + ÷ - - ÷ - - + ÷ ÷ - - - ÷ -  

. . . . . . . . .  + + + ÷ ÷ + ÷ ÷ + ÷ - - ÷ ÷ + ÷ ÷ + ÷ - - ÷  . . . . . .  4" . . . . .  + - - ÷ ÷ + + ÷ +  . . . . . . . .  4 - -  

+ + ÷ + + ÷  . . . . .  ÷ - - ÷  . . . .  ÷ ÷ - + + + + + + 4 - + + - ÷ - - ÷  . . . .  ÷ + - ÷ - - ÷ + + ÷ - - ÷ - - + + + ÷ - - ÷ -  

. . . . . . . . .  ÷ ÷ + ÷ + + + ÷ ÷ ÷ - - + ÷ ÷ + + + ÷ - - 4  . . . . . .  + . . . . .  ÷ - - ÷ + ÷ ÷ + ÷  . . . . . . . .  4 - -  • 

÷ ÷ + + ÷ ÷  . . . . .  ÷ - - + - - + - + + - + + - + + ÷ + + ÷ - ÷ - - ÷  . . . .  ÷ ÷ - + - - ÷ + ÷ ÷ - - ÷ - - ÷ + ÷ ÷ - - ÷ 4  

. . . . . . . . .  ÷ + + ÷ + + + + + + - - + + + ÷ + + + - - 4  . . . . . .  + . . . . .  4 - - + + + + + +  . . . . . . . .  4 - -  

H e r e  too, all these three neighborly matroid pseudomanifolds share the same 

tetrahedral partition, see Case OOO later. As we shall see later in Section 5, 

none of these oriented matroids with order 3 symmetry is realizable. 

For the symmetry a, it turned out that there are many neighborly matroid 

pseudomanifolds. As a interchanges two singular vertices, we can expect at most 

4 topological types of realizations. Thus we looked for 4 distinct oriented matroids 

with symmetry a which may yield these 4 types. 

We found 4 such neighborly matroid pseudomanifolds with symmetry a. 
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They  led us to the following 4 te trahedral  part i t ions of NPM03.  The  second 

case is of  interest later, its vertex 4 is of type  O, 5 is of type  I ,  6 is of type  O, so 

we denote it Case O I O .  

Case  0 0 0  : 

Case  OIO : 

Case  I O I  : 

Case  I I I :  

+1469 
+1249 +1689 

-1279 -1389 
-2579 -1358 
-2567 +2367 - +2378 +3478 -3458 

+1469 
+1~89 + I h 9  
-1389 -356~ 3457 -1279 
-1358 -2356 5 -4578 -2579 

l +2358 , +2578 ! 

-1379 

! i 
-1347 -t-1247 +2478 +2368 +3689 -3679 

I 4 -24,~ G I 
+1:~4~ .-1458 -~1468 +2469 -2569  +5679 

-1247 -2478 -2368 -3689 
+3457 -1457 4 +2468 6 -3569 +3567 

I I +1458 -1468 -2469 +2569 l [ 
I +1579 +1359 I 
I 5 I 
I I 

4.3 N P M 3 0 :  A PINCHED TORUS. 

The triangles in this case are 

124 127 136 139 147 158 159 168 235 238 246 258 
269 279 347 348 357 369 456 459 489 567 678 789 

NPM30 has the three singular vertices 1, 2, and 3, each of type (3, 5). I ts  au- 

tomorphism group is the cyclic group C6 of order 6 which is generated by 7r -- 
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(123)(456789). NPM30 is depicted in Figure 4. In this figure 7r appears as a glide 

reflection, 7r 2 is a pure t ranslat ion and 7r 3 is a pure reflection. 

There are many  admissible oriented matroids  all having trivial symmetry ,  but  

none with non-trivial symmetry.  Hence we can expect all 8 topological types. 

The te t rahedral  part i t ions are as follows: 

Case 0 0 0  4-1247 

-1369 
+267~, -6789 -1689 +1589 
-2a6v  I 
- 4 s 6 7  +34s7 -34s8  -4589 

-2358 

Case 0 0 1  

Case OIO 

Case I 0 0  

Case I I l :  

+1247 
4-2679 -6789 -3689 
-2467 +3489 
-4567 +3457 -3459 

- -  -1368 
3 +1358 

-1359 
-2358 

-1369 
-1568 +5678 +2578 
+1569 -2789 
-456~ -2469 +2489 

-2357 
2 +2347 

-2348 
+1247 

-2358 
-3478 -4789 +1479 
+3578 -1459 
+5678 -1568 +1456 

-1279 
1 +1269 

+1246 
-1369 

+2357 

I 2 
| +1238 -1258 -1245 -2456 
I I I 1 +1459 
I ~ -1237 -1347 +1349 -3489 
I a 

+1368 

! 

I 
+2567 -2679 

I 
+3689 +6789 

I 
I 

The other  three cases have no tetrahedral  partit ion. 

6 4 8 

Figure 4: NPM30,  a pinched torus 



Vol. 86, 1994 SPATIAL POLYHEDRA W I T H O U T  DIAGONALS 385 

4.4 NPM01:  A PINCHED MANIFOLD OF GENUS 2. 

The triangles in this case are 

124 235 3. t6 ,157 568 1~;7 '278 1:~8 125 236 3,17 458 156 267 378 148 
139 2.19 35!} ,14i9 579 689 179 289 

This is a pinched manifold of genus 2 with one singular vertex, namely 9 which 

is of type (4,4). The automorphism group is Cs generated by (12345678). In the 

terminology of block designs it is a 1-rotational design, see [18]. The blocks are 

generated by the above permutation. The vertex 9 plays the role of c~ in the 

definition of l-rotational designs (9 + 1 -- 9). NPM01 is depicted in Figure 5. It 

is the union of two tori with hole glued together along their boundary octagon 

(12345678). 

9 1 5 9 9 

3 

7 4 _ _  

9 1 5 

3 4 

7 8 

9 9 

2 6 9 

2 6 9 

Figure 5: NPM01, a pinched manifold of genus 2 

There is no oriented matroid with a symmetry of order 2 but there are many 

admissible oriented matroids without symmetry. We list two interesting admis- 

sible oriented matroids. 

+ + + + - + - + + ÷ - + + + - + + - + - - - + + + - + + + - + + - + - - + + + - - + + + _ + _ + + + _ ÷ + _ + + _ + + + _ + +  
-+++-+--+-+-+-+-+++-+_++_+__+_+_+___+_+_+_++_+__+___+_+_+++_++_ 

++++-+-+++-+++-++-+---+++-+++-++_+-_+++__+++_+_+++_++_++_+++_++ 
-+++-+--+++-+-+-+++-+-++-+--+++-+---+_+_+_++_+__+___+___++__+++ 

They differ by only 5 places, and they both share the same tetrahedral parti- 

tion. Yet, as we will see in the next section, the first of them is not realizable 
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while the second is. The genus 2 structure of this NPM can be easily seen from 

the arrangement of the tetrahedra in the partition. 

- 1 2 4 8  - 2 4 8 9  ~ - 4 0 8 9  
I +4568 

Case O :  +1238 - 2 3 7 8  - 2 3 6 7  - 3 4 6 7  - 4 5 6 7  
I +1567  

- 1 2 3 5  , , 4-1359 +1579  

For the second topological type (I) we picked a proper oriented matroid and 

it yielded the following tetrahedral partition. 

Case [ : 

- 1 2 4 8  ~ - 2 4 S 9  - 4 5 8 9  
I 

I +4s79 I 
+1238 - 2 3 7 8  - 2 3 6 7  - 3 4 6 7  - 4 6 7 9  9 - 5 6 8 9  

[ +1679  ] 

-1235 +135~ -11569 I 

4.5 NPM45: THREE 2-SPHERES. 

The triangles in this case are 

123 124 134 234 
156 167 178 189 159 357 379 369 368 358 
256 267 278 289 259 457 479 469 468 458 

This orientable neighborly pseudomanifold is connected, but not strongly con- 

nected : it is composed of three 2-spheres. The first 4 triangles form a tetrahe- 

dron; the next 10 triangles as well as the last 10 triangles form each a bi-pyramide 

over a pentagon. Each of these pentagons is the pentagram within the other pen- 

tagon, see Figure 6. Each of the vertices 1, 2, 3, 4 is singular of type (3, 5), and 

each of the other five vertices is singular of type (4, 4). 

! 3 

5 5 ~ 5 5 

1 1 

4 
Figure 6: NPM45, three 2-spheres 

This complex is highly symmetric. Its automorphism group is of order 80, 

generated by (12), (34), (56789), (13)(24)(6897). 
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NPM45 is the only of our five block designs, which has a subdesign. In [24] it 

is shown, tha t  NPM45 is derived from $2(2,3,4) which is the boundary of the 

tetrahedron. As we shall see later in Section 5, a symmetry  of order greater 

than 3 can not be realizable. There were altogether 128 oriented matroids which 

were reduced to only 18 essentially different cases. Two of these have a sym- 

metry  of order 4, one has a symmetry  of order 2, and the remaining 15 have 

no symmetries.  We found that  in all 18 cases the convex hull (note that  this is 

defined for oriented matroids as well) is a tetrahedron with vertices 1, 2, 3, 4. Note 

that  in this case the distinction between I -  and O-types mentioned at the end 

of Section 2 is meaningless. We picked an oriented matroid with the symmetry  

(12)(34)(5)(69)(78). As we will see in the next section, a tetrahedral  parti t ion is 

not needed here. 

5. Neighborly Polyhedra 

Our problem now is to realize the oriented matroids mentioned in Section 4, 

under the additional symmetry  assumptions. This NP-hard problem of deciding 

the realizability has been described and discussed eg in Ill] and in the literature 

cited there, see also [22]. For our purposes we have used refined methods. As the 

final results can be easily checked directly, we list the final results only. 

In one case, in order to show that  a certain symmetry  can not be realized, we 

include a corresponding non-realizability proof. 

5.1 NPM21:  A SINGLE NEIGHBORLY POLYHEDRON. 

5.1.1 THEOREM: The neighborly pseudomanifold NPM21 described in Section 

4 is realizable in R 3 with a two-fold symmetry. 

The coordinates are given by the matr ix  No. 1 in Section 6. The topological 

type of the singular vertices (see end of Section 2) is OIO, ie 2 and 8 are "outside" 

and 5 is "inside". 

5.2 NPM03:  FOUR NEIGHBORLY POLYHEDRA. 

5.2.1 THEOREM: There are four type-different neighborly polyhedra with sym- 

metry of order 2 and with boundary complex NPM03. 

The realizability of NPM03 in R 3 follows already from the observation that  

the mapping induced by (1)(2679845)(3) carries NPM03 to a subcomplex of the 
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boundary complex of the neighborly 4-polytope with 9 vertices, denoted N9o in 

the list of all the neighborly 4-polytopes with 9 vertices in [3]. 

Any Schlegel diagram of N90 will yield a geometrical embedding of NPM03 in 

R 3, in which the convex hull of the neighborly polyhedron P obtained this way 

is a tetrahedron, see [16], Sec.3.3. By a proper choice of the facet of N9o to serve 

as a base for the Schlegel diagram, we can get 0, 1, or 2 of the three singular 

vertices to be extreme vertices of P, that is, vertices of conv P. 

It is interesting to note that none of the other NPM's is embeddable in the 

2-skeleton of any convex 4-polytope with 9 vertices, and that among all the 23 

neighborly 4-polytopes with 9 vertices, see [3], NPM03 is embeddable only in 

N9o. 
Considering the nonpolytopal neighborly 3-manifolds we found that four of 

the NPM's are embeddable in neighborly 3-manifolds and neighborly 3-spheres, 

presented in [4]: 

NPM21 is embeddable in N94 by (146957)(238), in Ngs by (1746352)(8)(9) and 

in N591 by (1)(2)(368974)(5). 

NPM03 is embeddable in N96 by (139426)(587), in N99 by (129784356), in N591 

by (1)(268374)(5). 

NPM30 is embeddable in N97 by (1)(258974)(36), in Ngo by (142578936), in N91 

by (1)(25643789). 

NPM01 is embeddable in N92 by (127345689), in N9o by (1)(26473)(589). 

NPM45 is not embeddable at all. 

However, by this method we do not find symmetric realizations. When we look 

for symmetric realizations, we have : 

5.2.2 THEOREM: There is no geometrical realization for NPM03 with a symme- 

try of order 3. 

We consider the final polynomial used in the following proof to be of interest 

in its own right. Its type (affine conditions are involved as well) is different from 

those considered eg in [10]. 

Proof.." According to 4.2 we have to show that the 3 neighborly matroid pseudo- 

manifolds with the symmetry 7r mentioned there are not realizable. It is enough 

to show that  there exists a final polynomial p for these oriented matroids with 



Vol. 86, 1994 SPATIAL P O L Y H E D R A  W I T H O U T  DIAGONALS 389 

the proper ty  : 0 = p > 0. 

p = [1237] [1456] [4579] + [1246] [1278] [4567] 

>0 <0 <0 <0 <0 >0 

- [1246] [1279] [45671 - [1256] [12781 [4567] > O. 

<0 >0 >0 >0 <0 >0 

We define the following bracket polynomial: 

{ 1 2 -  f g h }  := [12fg] + [12gh] - [12fh] = 0. 

This polynomial  is zero as a result of the affine condit ion in rank 2. In order to 

see this, we delete the vertices 1 and 2. The points f ,  g and h are on a line. The  

proper ty  [fg] + [gh] - [fh] = 0 holds. 

With  the Grassmann-P1/icker syzygy {4511679} := [4516][4579] - [4517][4569] + 

[4519][4567] = [1456][4579] - [1457][4567] + [1459][4567] = 0 and because of the 

symmetry,  we can t ransform the first summand.  And we get the following form 

of p:  

p : (  [1237111457] - [1237] [1459] + [1246] [12781 

1 2 3 

- [ 1 2 4 6 ] [ 1 2 7 9 ] -  [1256][1278])[4567] 

4 5 

Now we can use the following Grassmann-Pli icker syzygies to t ransform p. 
{1712345} := [1237][14571 +[1247111248 ] -[1257][1268] = 0 

• y , • 

1 

{1912345 } : :  !1237][2459 ! +[1249][1247] 

2 
{1214678} := !1246][1278!-[1247][1268] 

3 
{1214679} := !1246][2279!-[1247][1269 ] 

4 

{1215678 } := !1256][2278!-[1257][1268 ] 

5 
p = 

- [1259][1267] = 0 

+ [1248][1267] = 0 

+ [1249][1267] = 0 

+ [1258][1267] = 0 

( -  [1247][1248] + [1257][1268] + [1249][1247]- [1259][1267] 
+ [1247][1268]- [1248][1267] -[1247][1269] + [1249][1267] 
- [1257][1268]+ [1258][1267]) [4567] 
( [1247] ( - { 1 2 -  489} + { 1 2 -  689}) 
+ [1267] ( - { 1 2 -  489} + { 1 2 -  589}))[4567] = 0 
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So we have p = [4567][1247] ({12 - 689} - {12 - 489}) + [4567][1267] ({12 - 589} 

- { 1 2 -  4 8 9 } )  = 0. 

Thus our theorem is proved. 

Thus the symmetry a in Theorem 5.2.1 is best possible. The matrices No.2, 

. . . .  No.5 in Section 6. provide coordinates for the 4 polyhedra realizing NPM03 

with the symmetry a. 

We show (Figure 7) parallel projections of one half of the second polyhedron 

P (Case OIO). This example was chosen, because it seemed to be in a sense the 

easiest to understand. We have chosen an exploded view as well. That  is, in order 

to improve the visualization of the structure, the tetrahedra are moved apart (as 

if a small explosion in some interior point of the body). The rotational symmetry 

with a vertical axis passing through 5 provides the key for a full comprehension. 

5.3 NPM30:  EIGHT NEIGHBORLY POLYHEDRA. 

5.3.1 THEOREM: There are 8 type-different neighborly polyhedra with boundary 

complex NPM30. 

The affine coordinates are listed as matrices No.6, . . . ,  No.13 in Section 6. 

5.4 NPM01:  T w o  NEIGHBORLY POLYHEDRA. 

5.4.1 THEOREM: There are 2 type-different neighborly polyhedra with boundary 

complex NPM01. 

8 

4 

Figure 7: NPM03, Case 010 
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In other words, the two topological cases described in Section 4.4 are realizable. 

To be more precise, the first oriented matroid described there is not realizable. 

There exists a bi-quadratic final-polynomial, see [10] for this notion. The second 

one and the third, which was not described in detail, are realizable with the 

coordinates in matrices No.14 (O) and No.15 (I) in Section 6. 

5.5 NPM45:  A SINGLE NEIGHBORLY POLYHEDRON. 

5.5.1 THEOREM: There is a neighborly polyhedron with a symmetry of order 2 

whose boundary complex is NPM45. 

The symmetry is (12)(34)(5)(69)(78) and the coordinates are given in the ma- 

trix No.16 in Section 6. 

5 

9 

/ 

Figure 8: The unfolded boundary complex of the holes inside 

the neighborly polyhedron realizing NPM45 

The convex hull is a tetrahedron T with the vertices 1,2,3 and 4. This polyhe- 

dron differs essentially from all the previous ones. It consists of the tetrahedron 

T with two interlaced holes inside it. Each hole has the shape of a bi-pyramide 

over a non-planar pentagon (see Figure 6) and resembles a bumerang. The two 
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bumerangs touch each other in the five vertices 5,6,7,8,9. The boundary complex 

of each of these bi-pyramides consists of two congruent parts,  each part  consisting 

of the five triangles sharing an apex of the bi-pyramide. Figure 8 depicts the un- 

folded boundary complexes of these two bi-pyramides in correct scale. With it a 

paper  model for the hole in this polyhedron becomes clear. To facilitate a proper 

folding of the paper, the edges at which the angle interior to the bi-pyramidal 

hole is greater than 7r are indicated by dots. 

We have seen (Sec.4.5) that  a neighborly matroid pseudomahifold of NPM45 

has symmetries of order 4. None of these symmetries can be realized geometri- 

cally, for the following reason. Each of these symmetries has at least two fixed 

points and therefore its geometric counterpart  is a rotation or reflection. This, 

in turn, implies that  certain four vertices form the vertices of a planar convex 

quadrangle, which contradicts the neighborliness. Thus the realization of NpM45 

described above is of maximal symmetry.  

6. C o o r d i n a t e  M a t r i c e s  

We list the coordinate matrices of all polyhedra in the following ordering : 

NPM21; NPM03 (000, OIO, IOI, III); NPM30 (000, OOI, OIO, IO0, 
OII, IOI, IIO, III); NPM01 (O, I);  NPM45. 

5 - 5  5 \ 
! 3.4 -6 .5  2 

- 5  - 5  - 5  
1 - 3 . 2  2.1 
0 0 1.3 

- 1  3.2 2.1 
5 5 - 5  

-3 .4  6.5 2 
- 5  5 5 

- 5  5 - 5  \ 
! 

5 5 5 
-3.06452 -4.03226 4.67742 

- 5  35 - 1 5  
0 0 2.5 
5 - 3 5  - 1 5  

3.06452 4.03226 4.67742 
- 5  - 5  5 
5 - 5  - 5  

- 5  5 5 
5 5 - 5  

1.52 -3 .7  -1 .52  
-6 .88  8.75 5.63 

0 0 - 3  
6.88 -8 .75  5.63 

-1 .52  3.7 -1 .52 
- 5  - 5  - 5  
5 - 5  5 

2.66 0 - 1  \ 
-0 .75 0 - 1  
1.41 54.36 79.88 
2.1 -0 .8  -1 .28 

-68.33 -68.33 0 
-0 .8  2.1 1.28 
54.36 1.41 -79.88 

0 -0 .75 1 
0 2.66 1 
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- 5  - 5  : 
0.57 0.06 - 36 

-0 .25 0.16 -4.15 
5 - 5  - 5  
0 0 -4.05 

- 5  5 - 5  
0.25 -0.16 -4 .15 

-0 .57 -0 .06 -4.36 
5 5 5 

- 5  5 - 5  \ 
/ 

5 5 5 
- 5  - 5  5 

-2.79 -0.25 -7 .49 
-3.31 -1 .38 -4 .43 
-2.85 1.25 -3 .36 

5 - 5  - 5  
-4.2844 -0.11 -3.6338 
-4.3036 -0.08 -3.6227 

/ - 5  5 - 5  
r 5 5 5 

- 5  - 5  5 0.74 
-8 .33 - 5  5 -2.41 
-5.91 -4 .09 5.91 0 
-35  5 -15  0 

-8 .85 --5.25 4.84 2.54 
5 - 5  - 5  0.71 

-8.82 -4 .08 3.32J ~-0.54 0.58 

-1 .3  -0 .96 -1.75 
1.33 2.07 -0 .12 

0 -0 .89 
0 -0.89 

-2 .62 1.12 
0.86 1.12 
2.55 0.03 
0.69 0.5 

0.63 

2.215 -0.149 2.903' 
- 5  5 5 

1.636 -1.718 4.954 
2.48 -0.139 2.619 

2.212 -0.155 2.896 
1.595 0.345 3.023 

5 5 - 5  
- 5  - 5  - 5  
5 - 5  5 

-0 .97 0 -2.71 
-2 .22 -2 .64 -0.81 
-0 .19 0.28 0.77 
8.59 0 -2.71 

0 -0 .02 0.37 
-1 .09 -1 .33 -0 .87 
-3 .87 -64.35 -1 .14 
-0.71 -1 .6  1.13 

0 64.47 0.37 

-0 .06 0 -0 .12 
17.65 0 -0 .12 
-0 .42 -3.42 -7.31 
6.58 -10.69 7.82 

0 -15.62 8.21 
0 4.38 8.21 

-3 .13 2.31 -14.87 
-0 .09 -13.21 6.88 
-0 .49 0.09 -0.41 

2.6923 2.3077 3.8462 
3.2051 3.0769 3.8462 
2.6798 2.3055 3.8277 
3.0986 2.9577 3.8732 
2.7164 2.3468 3.8474 

- 5  - 5  5 
5 5 5 
5 - 5  - 5  

- 5  5 - 5  
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5 5 - 5  
- 5  - 5  - 5  

2.75 -0 .17  2.07 
- 5  5 5 

-0 .9  0.2 -0 .9  
-0 .65  0.45 -0 .5  

5 - 5  5 
1.97 -0 .06 1.43 

-1 .45  1.45 0.7 

[ 5 5 - 5  
r 3.82 -0.61 -0 .58  

- 5  - 5  - 5  
3.87 0.05 0.43 
4.03 0.88 -0 .03  
3.97 -0 .69  -0 .33 

5 - 5  5 
3.92 -0 .67  -0 .58  
- 5  5 5 

-193.55 0 - 4 . 5 6 '  
0 1.00 0.22 

42.43 188.85 -4 .42  
0.57 1.54 -0 .88  

-79.76 3.64 -4 .39  
0 -1 .04  0.22 

193.52 -2 .20  5.12 
-4 .40  -0 .94  0.71 
0.11 0 -4 .56 

5 5 - 5  
- 5  - 5  - 5  
- 5  5 5 
5 - 5  5 
0 0 -0 .4  
1 1.5 0.6 

-2 .15 0.2 - 0 . 7  
2.15 -0 .2  -0 .7  
- 1  -1 .5  0.6 
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